Press Release Archive

  • home_icon HOME
  • News
  • Press Release Archive

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

 

Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and manipulating three-dimensional (3-D) positions of particles. Optical tweezers employ a tightly-focused laser whose beam diameter is smaller than one micrometer (1/100 of hair thickness), which generates attractive force on neighboring microscopic particles moving toward the beam focus. Controlling the positions of the beam focus enabled researchers to hold the particles and move them freely to other locations so they coined the name “optical tweezers.”

 

To locate the optically-trapped particles by a laser beam, optical microscopes have usually been employed. Optical microscopes measure light signals scattered by the optically-trapped microscopic particles and the positions of the particles in two dimensions. However, it was difficult to quantify the particles’ precise positions along the optic axis, the direction of the beam, from a single image, which is analogous to the difficulty of determining the front and rear positions of objects when closing an eye due to a lack of depth perception. Furthermore, it became more difficult to measure precisely 3-D positions of particles when scattered light signals were distorted by optically-trapped particles having complicated shapes or other particles occlude the target object along the optic axis.

 

Professor YongKeun Park and his research team in the Department of Physics at the Korea Advanced Institute of Science and Technology (KAIST) employed an optical diffraction tomography (ODT) technique to measure 3-D positions of optically-trapped particles in high speed. The principle of ODT is similar to X-ray CT imaging commonly used in hospitals for visualizing the internal organs of patients. Like X-ray CT imaging, which takes several images from various illumination angles, ODT measures 3-D images of optically-trapped particles by illuminating them with a laser beam in various incidence angles.

 

The KAIST team used optical tweezers to trap a glass bead with a diameter of 2 micrometers, and moved the bead toward a white blood cell having complicated internal structures. The team measured the 3-D dynamics of the white blood cell as it responded to an approaching glass bead via ODT in the high acquisition rate of 60 images per second. Since the white blood cell screens the glass bead along an optic axis, a conventionally-used optical microscope could not determine the 3-D positions of the glass bead. In contrast, the present method employing ODT localized the 3-D positions of the bead precisely as well as measured the composition of the internal materials of the bead and the white blood cell simultaneously.

 

Professor Park said, “Our technique has the advantage of measuring the 3-D positions and internal structures of optically-trapped particles in high speed without labelling exogenous fluorescent agents and can be applied in various fields including physics, optics, nanotechnology, and medical science.”

 

Kyoohyun Kim, the lead author of this paper (“Simultaneous 3D Visualization and Position Tracking of Optically Trapped Particles Using Optical Diffraction Tomography”), added, “This ODT technique can also apply to cellular-level surgeries where optical tweezers are used to manipulate intracellular organelles and to display in real time and in 3-D the images of the reaction of the cell membrane and nucleus during the operation or monitoring the recovery process of the cells from the surgery.”

 

The research results were published as the cover article in the April 2014 issue of Optica, the newest journal launched last year by the Optical Society of America (OSA) for rapid dissemination of high-impact results related to optics.

 

 

Figure 1: This picture shows the concept image of tweezing an optically-trapped glass bead on the cellular membrane of a white blood cell.

Concept%20image%20of%20tweezing%20an%20optically-trapped%20glass%20bead.jpg


 

Figure 2:High-speed 3-D images produced from optical diffraction tomography technique


High-speed%203-D%20images%20produced%20by%20ODT.jpg


List of Articles
No. Category Subject Author Date Views
35 KIHST High-Precision Ranging Method for Future Space Missions Is Developed [2010-08-24] file KAIST_INSTITUTE 2016.06.10 4137
34 Others Won the NAS Award (National Academy of Science Award) file KAIST_INSTITUTE 2016.06.09 4203
33 KIITC 초슬림 휴대폰 나온다 [2012-01-12] file KAIST_INSTITUTE 2016.06.10 4522
32 KIHST 이제는 세포 내부도 훤히 들여다본다 [2012-01-27] file KAIST_INSTITUTE 2016.06.10 4804
31 KIR Prof. Jung Kim's project has been selected to the research project for Public Welfare Safety [2010-08-16] KAIST_INSTITUTE 2016.06.10 4887
30 KIHST KIOST 김승우 연구소장 올해 국가과학자 선정 [2012-09-20] KAIST_INSTITUTE 2016.06.10 4913
29 Others Synthesis of Calcium Crystals on Any Material Surfaces is Developed [2010-07-20] file KAIST_INSTITUTE 2016.06.09 4928
28 KIB 이상엽, 정하웅 교수팀, 가상세포로 필수대사물질 발굴, 간겅성 문제 규명 [2007-08-16] file KAIST_INSTITUTE 2016.06.08 5249
27 KIR 대한민국 특허왕 이대길 교수, 올해의 KAIST인에 선정 [2009-11-23] file KAIST_INSTITUTE 2016.06.09 5448
26 KIR Won the Outstanding Indistry-cooperation Awardby Hyundai Motor Company [2011-12-13] file KAIST_INSTITUTE 2016.06.10 5507
25 KIITC Technology Transfer for Powerless/ wireless Keyboard [2010-07-20] file KAIST_INSTITUTE 2016.06.09 5568
24 KIITC 박인규 교수, 공기오염 측정 센서 원천기술 개발 [2015-08-05] file KAIST_INSTITUTE 2016.06.10 5731
23 Others Elected a Fellow of ACI(American Concrete Institute) [2011-12-13] file KAIST_INSTITUTE 2016.06.10 5737
22 KINC LED의 새로운 발견, 형광체 없이 다양한 색깔의 빛 낸다 [2012-01-17] file KAIST_INSTITUTE 2016.06.10 5948
21 KINC 보다 태양빛에 가까운 LED 개발 [2012-01-12] file KAIST_INSTITUTE 2016.06.10 6762
20 KIITC KAIST's Smart E-book System More Convenient than Paper-based Books [2012-02-19] file KAIST_INSTITUTE 2016.06.10 6875
19 KINC 전기적 자기적 성질 동시에 갖는 신물질 물성 규명 [2012-01-17] file KAIST_INSTITUTE 2016.06.10 7033
18 KIITC Won the Largh-scale Convergence Project Contract [2012-01-12] file KAIST_INSTITUTE 2016.06.10 7868
17 KINC 조병진, 임성갑, 유승협 교수 휘어지는 10나노미터 고분자 절연막 개발 [2015-08-05] file KAIST_INSTITUTE 2016.06.10 7947
16 KIR BBC News Channel's Technology Program "Click"Aired KAIST's Jellyfish Robot [2015-08-06] file KAIST_INSTITUTE 2016.06.10 8135
Board Pagination Prev 1 2 Next
/ 2

KAIST 291 Daehak-ro, Yuseong-gu, Daejeon (34141)
T : +82-42-350-2381~2384
F : +82-42-350-2080
Copyright (C) 2015. KAIST Institute