• home_icon HOME
  • Research
  • Highlights
Making Graphene Using Laser-induced Phase Separation

KAIST researchers reveal how laser annealing technology leads to the synthesis of graphene from silicon carbide (SiC).

The laser annealing technology has been adopted in mass-manufactured displays, like shiny flat AMOLED displays in our smart phones. Interestingly, a similar procedure can be used to generate ultrathin nanometerials, represented by graphene. Graphene is a strong and thin nanomaterial made of carbon, its electric and heat-conductive properties have attracted the attention of scientists worldwide.

Prof. Sung-Yool Choi and Prof. Keon Jae Lee's joint research group at the Center for Advanced Materials Discovery towards 3D Displays (CAMD3) discovered a mechanism of graphene synthesis, using a solid-state phase separation of single-crystal SiC, which is induced by a laser-material interaction. This study, published in Nature Communications, demonstates how this laser technology separate a complex compound (SiC) into two ultrathin layers of carbon and silicon. Although several fundamental studies have led fundamental understanding of the effect of excimer lasers in transforming elemental materials like silicon, the laser interaction with more complex compounds like SiC has rarely been studied due to the complexity of compound phase transition and ultra-short processing time.

With high resolution transmission electron microscope images and molecular dynamic simulations, the researchers found that a single-pulse (30 nanoseconds) irradiation of xenon chloride excimer laser melts the surface of SiC, leading to the separation of a liquid SiC layer, a disordered carbon layer with graphitic domains (about 2.5 nm thick) on top surface and a polycrystalline silicon layer (about 5 nm) below carbon layer. Giving additional pulses causes the sublimation of the separated silicon, while the disordered carbon layer is transformed into a multilayer graphene.

Prof. Choi and Lee said that "This research shows that the laser material interaction technology can be a powerful tool for next generation of two dimensional nanomaterials," and "Using laser-induced phase separation of complex compounds, new types of two dimensional materials can be synthesized in the future."

Prof. Sung-Yool Choi
Prof. Keon Jae Lee
2017-1 KAIST Matrix

KAIST 291 Daehak-ro, Yuseong-gu, Daejeon (34141)
T : +82-42-350-2381~2384
F : +82-42-350-2080
Copyright (C) 2015. KAIST Institute